Inhaltsverzeichnis

Dynamischer hydraulischer Abgleich in HLK-Anlagen

Hydraulische Querkopplungen lösen Temperaturschwankungen aus

Wie oben beschrieben, kann sich der Energiebedarf eines Abschnitts des Heiz- oder Kühlsystems zeitweise erhöhen (oder verringern), zum Beispiel wenn sich in einem Konferenzraum am Anfang eines Meetings viele Teilnehmer befinden und diese am Ende den Raum verlassen. Dies passiert überall im Gebäude, das heißt, zu verschiedenen Zeitpunkten und an verschiedenen Orten.

Dieser Anstieg des Energiebedarfs in bestimmten Abschnitten des Systems führt zu einer Verringerung der Energie, die in andere Bereiche des Gebäudes transportiert wird. Die Temperatur dieser Bereiche weicht dann vom Nennwert ab und es dauert, bis der Temperaturregler des Raums die entsprechende Reaktion auslöst. Die Temperatur wird dann immer wieder ansteigen und absinken, bis sie sich nach einer gewissen Zeit um den Sollwert stabilisiert (Abb. 4 + 5). Dieser Effekt wird als "hydraulische Querkopplung" bezeichnet.

Das Schema erklärt die hydraulische Querkoppelung.
Quelle: Autor
Abb.4+5: Durch eine Kreuzverbindung weicht die Temperatur vom Sollwert ab. Eine verzögerte Korrektur der Raumtemperatur führt zu großen Temperaturschwankungen, weniger Komfort und Energieverlusten. PICVs gleichen automatisch Schwankungen im Druck aus und halten die Raumtemperatur sehr nahe am Sollwert.

Das erste Problem bei einer hydraulischen Querkopplung besteht darin, dass die Benutzer des Gebäudes sich zu den Zeiten der niedrigsten oder höchsten Temperatur im Zyklus unwohl fühlen. Das zweite Problem besteht darin, dass die Benutzer in der Regel den Temperatursollwert ändern, wenn sie sich unbehaglich fühlen.

Wenn die Temperatur zum Beispiel während der Wintermonate am niedrigsten ist, erhöhen sie den Sollwert möglicherweise um einige Kelvin. Die gesamte Kurve wird um ein oder zwei Kelvin nach oben verschoben. Sie reagieren jedoch wahrscheinlich nicht, wenn die Raumtemperatur eine Stunde später etwas höher als normal ist. Die Verschiebung des Sollwerts bleibt die gesamte Saison über bestehen.

Ein ähnliches Szenario spielt sich in den Sommermonaten ab. Wenn der Raum den höchsten Wert erreicht hat, erhöhen die Benutzer möglicherweise die Kühlleistung, ohne sie später wieder zu verringern, wenn die Temperatur ihren niedrigsten Wert erreicht hat.

Sowohl bei der Heizung als auch bei der Kühlung erhöht sich der Gesamtenergieverbrauch aufgrund der Temperaturschwankungen durch die Hydraulikstörungen. Wenn PICVs verwendet werden, gleicht ihre automatische Abgleichfunktion Druckschwankungen aus. So können eine bessere Regelgenauigkeit auf den Sollwert erreicht und die Temperaturschwankungen nahezu beseitigt werden (Abb. 4 + 5).

Voller Hub für präzisere Regelgenauigkeit

Eine noch präzisere Regelgenauigkeit wird durch die PICVs von Siemens erreicht, bei denen die Vorein-stellung durch die Einschränkung des freien Regelpfadbereichs erreicht wird. Da der volle Hub des Durchflussregelventils verfügbar ist, um die Öffnung zu steuern, kann der Volumendurchfluss mit einer deutlich größeren Anzahl an Schritten definiert werden (Abb. 6).

Die Grafik vergleicht PICVs, bei denen die Voreinstellung durch die Begrenzung des Hubs des Durchflussregelventils (Hubbegrenzung) erreicht wird und PICVs von Siemens.
Quelle: Autor
Abb.6: PICVs, bei denen die Voreinstellung durch die Begrenzung des Hubs des Durchflussregelventils (Hubbegrenzung) erreicht wird, haben eine verringerte Regelgenauigkeit (rot). PICVs von Siemens, bei denen die Voreinstellung durch die Begrenzung des Regelpfadbereichs erreicht wird, verfügen nach wie vor über den vollen Hub und sorgen für eine wesentlich feinere Regelung von Durchfluss und Temperatur (grün).

Die Temperatur kann in viel kleineren Schritten erreicht werden, wodurch Temperaturschwankungen und Unbehagen noch weiter verringert werden.

Folglich fühlen sich die Benutzer beim ursprünglichen Sollwert nicht mehr unbehaglich und werden den Energiebedarf nicht ändern, um die Spitzen der Temperaturschwankungen auszugleichen. Wenn dies während der gesamten Saison auf das gesamte Gebäude übertragen wird, ergeben sich erhebliche Energieeinsparungen.

Konventionelle Systeme benötigen konstanten Druck

Moderne Energietransportsysteme, wie Pumpen mit variabler Drehzahl, passen die Förderhöhe einer Pumpe und den Volumenstrom an die erforderliche Last an. Es gibt heute eine Vielzahl von Regelstrategien auf dem Markt. Die Regelung kann in Verbindung mit dem Differenzdruck, dem effektiven Volumenstrom durch einen Durchflussmesser sowie der Differenztemperatur, Außentemperatur oder Vorlauftemperatur erfolgen.

Wie bereits oben erläutert, ist ein konventionelles Hydrauliksystem "statisch abgeglichen". Der hydraulische Widerstand der Abgleichdrosseln wird so dimensioniert, dass das System für einen ausgelegten Betriebszustand ideal abgeglichen ist. Da ein solches System nach wie vor auf Druckunterschiede reagieren könnte, ist die Pumpenregelstrategie so ausgelegt, dass ein konstanter Differenzdruck im System sichergestellt ist (Abb. 7).

Die Grafik erklärt eine Pumpenregelstrategie, die sicherstellt, dass der Differenzdruck konstant auf dem Sollwert gehalten wird.
Quelle: Autor
Pumpenregelstrategie, die sicherstellt, dass der Differenzdruck konstant auf dem Sollwert gehalten wird.

Jede Verringerung des Druckunterschieds könnte zum "Verhungern" einiger Übergabestellen führen. Selbst bei vollständiger Öffnung erhalten sie nicht den erforderlichen Durchfluss. In der Folge ist der Energieaustausch unzureichend und der Temperatursollwert kann nicht mehr sichergestellt werden.

Um den erforderlichen Durchfluss sicherzustellen, müssen Pumpen gegen den hydraulischen Widerstand arbeiten, der in das System integriert wurde, um einen normalen Betriebszustand sicherzustellen, selbst wenn der tatsächliche Betriebszustand stark davon abweicht.

Auf der anderen Seite ist es mit PICVs möglich, den gleichen Durchfluss bei einem geringeren Druckunterschied bereitzustellen. Solange der Druckunterschied im zulässigen Betriebsbereich des PICV bleibt, wird der Durchfluss auf dem eingestellten Wert gehalten ("automatische" Abgleichsfunktion).

Das öffnet die Tür für erweiterte Pumpenregelungsstrategien, bei denen derselbe Durchfluss bei einem geringeren Druckunterschied, irgendwo zwischen dem niedrigsten Wert (um im Betriebsbereich des PICVs zu bleiben) und dem Sollwert, bereitgestellt wird (Abb. 8).

Die Grafik erklärt eine Pumpenregelstrategie mit Variation des Differenzdrucks.
Quelle: Autor
Abb.8: Pumpenregelstrategie mit Variation des Differenzdrucks.

Die Pumpe muss gegen weniger Widerstand "kämpfen". Sie lässt sich mit einer optimalen Geschwindigkeit bzw. Drehzahl betreiben und benötigt dadurch weitaus weniger Leistung.

Anwendung in einer realen Fallstudie

Die drei Möglichkeiten zur Erreichung von Einsparungen, die in diesem Fachartikel beschrieben werden, wurden auf einem Campus mit verschiedenen Gebäuden in einer großen saudi-arabischen Stadt mit einer repräsentativen Anzahl von Heiz- und Kühltagen umgesetzt.

Dieses Gebäude verfügt über Klimageräte und Ventilatorkonvektoren mit Kaltwasser zur Kühlung und Elektronachwärmern zum Heizen. Das Kaltwassersystem umfasst die folgenden Komponenten:

  • Zehn Kältemaschinen im Versorgungsgebäude. Neun im Einsatz und eine im Stand-by; Leistung: je 1.370 kW.
  • Zehn primäre Kaltwasserpumpen, konstante Drehzahl im Versorgungsgebäude. Neun im Einsatz und eine im Stand-by; Volumenstrom: 55 l/s (198 m³/h) bei 30 m Förderhöhe. Das Verhältnis der installierten Pumpenleistung und Kühlleistung (Kältemaschine) beträgt etwa 1,5 Prozent.
  • Zehn sekundäre Kaltwasserpumpen, variable Drehzahl im Versorgungsgebäude. Neun im Einsatz und eine im Stand-by; Volumenstrom: 55 l/s (198 m³/h) bei 55 m Förderhöhe. Das Verhältnis der installierten Pumpenleistung und Kühlleistung (Kältemaschinen) beträgt etwa 2,5 Prozent.
  • Verschieden große Luftbehandlungsgeräte und Ventilatorkonvektoren platziert in jedem Gebäude entsprechend den erforderlichen Kühllasten. Regelventile mit elektrischen Stellantrieben, die in den Kaltwasser-Rücklaufleitungen von den Luftbehandlungsgeräten und Ventilatorkonvektoren installiert sind.

Einsparungen bis 30 Prozent durch PICVs

Mithilfe von tatsächlichen Betriebs- und Klimadaten wurden Energieeinsparungen für die Energieverteilung und -erzeugung mit den folgenden drei Methoden erreicht:

  • Verhindern einer Überversorgung des Wärmeübertragers zu jeder Zeit und bei jeder Betriebsbedingung.
  • Verbessern der Regelgenauigkeit, indem eine hydraulische Querkopplung zwischen angrenzenden Regelkreisen verhindert wird.
  • Ermöglichung von erweiterten Energieverteilungsstrategien, indem das Risiko eines "Verhungerns" von Wärmeübertragern/Luftkühlern beseitigt wird.

In diesem Fall haben konservative Berechnungen gezeigt, dass durch die Verwendung von PICVs in den Gebäuden Einsparungen von bis zu 25 bis 30 Prozent bei der Energieverteilung sowie Einsparungen von zwei bis fünf Prozent bei der Energieerzeugung erzielt werden konnten.

In absoluten jährlichen Zahlen waren das jeweils etwa 330 MWh und 200 MWh bzw. ergaben sich jährliche Gesamtkosteneinsparungen von etwa 34.000 €.

Weiterführende Informationen: https://www.siemens.de/acvatix

Dienstag, 12.12.2017

Von Masud Wasay
Produktmanager Ventile und Stellantriebe Siemens AG Building Technologies Division